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ABSTRACT

This is the final technical report for the grant, "Mathematical
Programming and Logical Inference," AFOSR-87-0292. The object of this
research is to develop new and effective methods for logical inference
that are based on mathematical programming.

We investigated fast packing and covering algorithms as well as
polyhedral properties of these problems. We Identified classes of
covering and inference problems that can be solved by linear programming.
We also obtained several results in both deductive and inductive logic.
In the area of deductive logic, we developed branch-and-cut algorithms for
inference In propositional logic, generalized the notion of a Horn problem
(widely used in expert systems), designed a new algorithm for verifying
logic circuits, found new connections between propositional logical and
cutting plane theory, developed an inference method for a generalized
belief net ("Bayesian logic"), and proposed new computational methods for
Dempster-Shafer theory. In inductive logic, we proposed a new,
regression-based method for generating rules for an expert system.
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1. INTRODUCTION

This is the final technical report for grant AFOSR-87-0292,

"Mathematical Programming and Logical Inference."

The purpose of this research is to search for mathematical structure
in the semantics of logics that are useful in artificial intelligence and
decision support systems, and to exploit this structure to solve inference
problems rapidly. In particular we look for structure that permits us to
use the problem-solving machinery of mathematical programming. We believe
that these quantitative methods can solve inference problems that have
proved difficult or impossible for symbolic methods popular in artificial
intelligence, and this belief has been partially confirmed for
propositional and probabilistic logic.

We solve inference problems in propositional logic by formulating
them as a integer programs, whose structure we exploit to solve with
branch-and-cut and other methods. We propose solving problems in belief
nets by combining such mathematical programming techniques as column
generation and Benders decomposition.
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2. TECHNICAL RESULTS

2.1 Packing and Covering

Packing and covering problems are closely related to inference
problems in propositional logic.

2.1.1 Fast Packing and Covering Algorithms

The set packing problem is equivalent to the vertex packing problem
on the intersection graph G of the coefficient matrix of the packing

A

problem at hand, and it is also equivalent to the maximum clique problem
on the complement G of G A

A A

In a sequence of papers by Balas and Yu, Balas, Chvatal and Nesetril,
and Balas in the mid-eighties, a new type of branch and bound approach was
introduced for finding a maximum clique in an arbitrary graph, In which
the subproblems generated are polynomially solvable. This is achieved by
always choosing subgraphs that belong to some polynomially solvable class.
When the subgraphs are triangulated, it is convenient to use the "dual"
problem of finding a minimum weighted vertex coloring as an upper boundin
device. In [9] Balas and Xue give an O(n 2) algorithm for finding such a
vertex coloring, and use it in the framework of a branch and bound
algorithm of the above mentioned type to solve the maximum weight clique
problem in an arbitrary graph. While earlier methods were typically
applied to problems with 50-100 vertices, the new algorithm solves
problems on random graphs with up to 1000 vertices..

In another computationally oriented paper [51, Balas and Carrera use
a subgradient-based procedure which combines dual ascent with primal
heuristics and incorporates cut generating techniques, to solve large
sparse real world set covering problems with up to 200-300 constraints and
4000-8000 variables. The algorithm is a vastly improved version of the
Balas-Ho approach developed in the late seventies.

2.1.2 Polyhedral Results for Covering Problems

The "deepest* and most effective cutting planes for an integer
program associated with an inference problem are the facets of the convex
hull of the integer solutions. G. Cornu6jols and A. Sassano wrote a paper
[17] describing the 0,1 facets (those with variable coefficients in {0,1}
and arbitrary right hand side coefficient) for the set covering problem,
which is a special case of the inference problem.

Balas and Ng [61 characterized the class of valid inequalities for
the set covering polytope with coefficients equal to 0, 1 or 2, and gave
necessary and sufficient conditions for such an equality to be minimal and
to be facet defining. They showed that all inequalities in the above
class are contained in the elementary closure of the constraint set, and
that 2 is the largest value of k such that all valid inequalities for
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the set covering polytope with coefficients no greater than k are
contained In the elementary closure.

In a companion paper 17], Balas and Ng connected this
characterization to the theory of facet lifting. In particular, they
introduced a family of lower dimensional polytopes and associated
Inequalities having only three nonzero coefficients, whose lifting yields
all the valid Inequalities In the above class, with the lifting
coefficients given by closed form expressions.

2.1.3 Unions of Polyhedra

A central problem in polyhedral combinatorics is to characterize the
convex hull of a union of polyhedra. One such characterization, given by
Balas in the mid-seventies, is by a system of linear Inequalities in q-n
variables, where q is the number of polyhedra In the union and n the
dimension of the space containing the polyhedra. When all polyhedra are
described by systems that differ only in their right hand side, It Is
sometimes possible to describe the convex hull of the union by a system
whose left hand side is the common left hand side of the individual
systems, and whose right hand side is a convex combination of the
individual right hand sides. This reduces the number of variables needed
for the characterization from q-n to q + n. Jeroslow, and later Blair,
specified certain conditions under which such a simplified representation
is possible. In (41, Balas gave a new sufficient condition for this
property to hold, which is often easier to recognize. In particular, he
showed that the condition is satisfied for polyhedra whose defining
systems Involve the arc-node incidence matrices of directed graphs, with
certain right hand sides. As a special case, he also derived the compact
linear characterization of the two ter~ainal Steiner tree polytope due to
Ball, Liu and Pulleyblank.

2.2 Problems Soluble with Linear Programming

Some Inference problems in propositional logic can be solved
relatively quickly by linear programming. These Include problems that,
when formulated as an integer program and the integrality constraints
dropped, necessarily have an Integer solution. Problems whose
coefficients form an "ideal" matrix have this property, and in [161 G.
Cornuejols and B. Novick have undertaken to characterize Ideal matrices.
Their approach is to describe the matrices that are minimally nonideal
(i.e, they become Ideal if any variable Is fixed to 0 or 1). The results
have striking similarities with the theory developed over the past twenty
years for another important class of matrices, the so-called perfect
matrices. There are also important differences. One such difference Is a
rich variety of small minimally nonideal matrices (whereas there are only
three known classes of minimally imperfect matrices).
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2.3 Inference in Propositional Logic

An Inference (or satisfiability) problem in propositional logic can
be formulated as a generalized covering problem. This is a 0-1 integer
programming problem whose constraints have the form ax a b, where the
coefficients belong to (0,1,-I). When b Is equal to one minus the
number of -l's In a, the problem represents an Inference problem. When,
In addition, the coefficients in a belong to f0,1), the problem is a
set covering problem. When the coefficients belong to (0,1) and b Is
equal to one less than the number of l's In a, the problem is a set
packing problem.

2.3.1 Branch and Cut Methods

One approach to solving the integer program associated with an
inference problem is by a branch-and-cut method; that is, a
branch-and-bound method that generates cutting planes at some or all nodes
of the search tree. In some early work, J. Hooker solved this problem by
exploiting the fact that resolution, a well-known theorem proving
technique, can be used to generate separating cuts. This approach solved
inference problems 1000 or more times faster than ordinary resolution on a
large class of randomly-generated problems [21]. He also showed that two
particular types of resolution (input and unit resolution), which are used
for Inference in Horn knowledge bases, In effect generate all propositions
that are "rank one" cutting planes for the integer program [241. In a
third paper (26], he and C. Fedjki showed that these cutting planes, as
part of a branch-and-cut procedure, lead to an even more effective
Inference algorithm. It solved hard randomly-generated inference problems
more rapidly than what appeared to be the stiffest competition, a very
promising branching algorithm developed by R. Jeroslow and J. Wang [28].
The Jeroslow and Wang method, however, was superior on easy problems. No
attempt was made to compare the branch-and-cut method with the traditional
resolution-based methods, because the latter would run far too long on
problems of the size tested.

2.3.2 Resolution and Cutting Planes

One of the fundamental problems of Integer programming is to generate
all valid cuts for a given set of constraints In 0-1 variables. One
approach to solving the problem is to generate a complete set of strongest
possible or "prime" cuts, which are cuts that are strictly dominated by no
other. (One cut dominates another when all 0-1 points satisfying one
satisfy the other.) The problem of generating all prime cuts is a
generalization of the problem of generating all prime implications of a
set of logical clauses, which can be solved by resolution (as shown by W.
V. Quine in the 1950's). J. Hooker showed that resolution can be
generalized to generate all prime cuts for an extended type of clause In
which at least a specified number of propositions are asserted to be true
[20]. In a recent paper [25], he extended this result to a method for
generating prime cuts. In particular, he showed that two basic cutting
plane operations generate all prime cuts (up to equivalence). Thus one
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can solve a fundamental problem of cutting plane theory by taking a
logical point of view.

2.3.3 Generalized Horn Problem.

Horn clauses (disjunctions containing at most one unnegated literal)
are very important in artificial intelligence because, for. them, the
inference problem can be solved rapidly. It is natural to try to extend
the notion of a Horn clause to cover a wider class of propositions without
forfeiting ease of solution.

S. Yamasaki and S. Doshita [321 found such a class that permits
multiple positive literals in a clause provided that, when the clauses are
combine the positives are "nested." V. Arvind and S. Biswas [21 found
an O(n ) algorithm for solving these problems. G. Gallo and Scutell&
[18] generalized this work by finding a hierarchy of problem classes (each
recognizable In polynomial time), the first of which is the ordinary Horn
class, and the second of which is the Yamasaki and Doshita class.

V. Chandru and J. Hooker [14] found a generalization of Horn problems
for which the satisfiability (or inference) problem can be solved using
the same technique used for ordinary Horn problems (unit resolution), and
just as rapidly. Beginning with a result of Chandrasekaran [121, they
showed that to every rooted, directed tree there corresponds a family of
generalized Horn problems. In particular, ordinary Horn sets correspond
to wheels in which the hub is the root. Horn problems that correspond to
a given rooted tree are those each of whose clauses can be regarded as
specifying flows on the tree that take the pattern of a star subtree
centered at the root, plus a single chain. They extended an Idea of
Aspvall [3] to formulate an O(n ) recognition algorithm for problems of
this form (modulo complementation of variables) when the underlying tree,
and the assignment of variables to its arcs, are given. As yet there is
no known polynomial-time recognition algorithm when the tree is
unspecified. But Chandru and Hooker show how a knowledge base having
extended Horn structure can be built in practice by choosing an underlying
tree that suits the application.

2.3.4 Equivalence of Logic Circuits

An important problem in computer design is to check the equivalence
of a newly designed circuit with one known to represent the desired
boolean function. Computer firms have been known to spend months of
computer time checking a new circuit design by simulating its behavior for
all (or many) possible inputs. J. Hooker and his student Hong Yan solved
this problem by applying Benders' decomposition to an integer programming
model of the problem. Computational results were Initially discouraging,
because of the large number of Benders cuts that had to be generated. But
more recently they discovered that a logical interpretation of the Benders
cuts leads to a totally new symbolic algorithm, which looks much more
promising. Computational tests are underway.

8



2.4 New Inference Kethods for Belief Systems

2.4.1 Belief Nets.

Belief nets are used to represent uncertainty and causal
relationships in expert systems. One popular type of belief net is a
Bayesian network [30], which becomes an influence diagram [271[31] when
decision nodes are added. In order to use a Bayesian network, however,
one must specify an often impracticably large number of prior and
conditional probabilities.

An alternative approach to representing uncertainty and causal
relations is probabilistic logic, which was originally proposed two
centuries ago by G. Boole [10][19] and recently reinvented by N. Nilsson
[29]. It is much easier to use than Bayesian networks, since one can
specify only as many probabilities (or probability ranges) as he knows.
The inference problem can be solved as a linear program if one uses column
generation methods, which have been proposed independently by three
groups: D. Kavvadias and C. H. Papadimitriou; P. Hansen, B. Jaumard and
students; and J. Hooker [23].

But probabilistic logic also has a weakness: much of what people
know about probabilities is that a given proposition depends on only a few
others in the knowledge base and is essentially independent of the rest.
These independence assumptions are captured in a Bayesian network but not
in probabilistic logic.

K. A. Andersen and J. Hooker (1] obtained the advantages of both
probabilistic logic and Bayesian networks by merging them to yield a new
type of belief system they call Bayesian logic. Inference poses a
substantial computational problem in Bayesian logic, as in Bayesian
networks. But Andersen and Hooker showed that applying Benders'
decomposition technique to the nonlinear program corresponding to a
Bayesian logic problem allows one to use the same column generation
techniques that are used in probabilistic logic. They also showed that
for a large class of networks (including many that are not "singly
connected"), the number of nonlinear constraints needed to encode the
independence assumptions grows only linearly with the size of the problem.
In particular, the following was proved. Divide the ancestors
(predecessors) of a node in a Bayesian network into generations, so that
the node itself comprises generation 0, and the parents (immediate
predecessors) of all the nodes In generation k comprise generation
k + 1. Further divide each generation into sets, no member of which has a
common ancestor with a member of another. The resulting sets are
ancestral sets, and an ancestral set joined by the parents of all its
members Is an extended ancestral set. Then if the maximum size of an
ancestral set is bounded by a constant, the number of nonlinear
constraints required grows linearly with the number of nodes in the
network.
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2.4.2 Dempster-Shafer Theory

Dempster-Shafer Theory is a well-known mathematical approach to
combining evidence. It differs from probabilistic logic and Bayesian
systems in that, In the latter systems, one must accumulate all the
evidence for or against a given proposition and then assign a probability
number that reflects the degree of evidence. In Dempster-Shafer theory,
one can assign several probability numbers that reflect different sources
of evidence and combine them mathematically. The task computing the
combination grows exponentially with the number of sources, however. V.
Chandru and J. Hooker propose in a book (now in preparation [151) a new
method, based on a set covering model, for computing the combination.

2.5 A New Approach to Obtaining Rules for Expert Systems

A serious bottleneck In the construction of expert systems Is
reducing an expert's knowledge to rules. One approach Is to analyze a
record of the expert's behavior over a long period and extract rules that
describe it. The usual approach Is to use a clustering algorithm or some
similar approach to find rules that are reasonably simple and yet
reasonably approximate the expert's behavior. But there is no way to
check statistically whether a pattern captured by the rules Is genuine or
a random effect. E. Boros, P. Hammer and J. Hooker have proposed a new
approach that parallels regression theory in statistics [11]. Just as one
fits a mathematical formula to numerical data, they fit a logical formula
to discrete data. (The approach differs from logit and categorical data
analysis.) This permits statistical tests of significance similar to
those used In classical regression analysis. Boros, Hammer and Hooker use
Bayesian estimation, since maximum likelihood estimation has some
undesirable properties. They solve the problem in the form of a
pseudo-boolean optimization problem. They also develop fast algorithms
for solving special cases of the problem, such as cases in which no
negations occur In the problem. Their paper Is in preparation.

2.6 A New Book

J. Hooker wrote for Decision Support Systems the first survey of
mathematical programming methods in logic [221. It traces the development
and historical roots of the field, Identifies the Important problems, and
proposes directions for future research. J. Hooker and V. Chandru of
Purdue University wrote a second survey paper that, unlike the first,
discusses types of logic other than propositional logic. It appeared as a
chapter in a book on Al in manufacturing [8). Our conversations with
other investigators indicate that these two papers have sparked interest
In the field In Japan and Europe as well as the United States. Indeed,
papers on the satisfiability problem have mushroomed in the last couple of
years.

Chandru and Hooker are extending these two essays into a systematic
treatment of the field, Optimization Methods for Logical Inference (151.
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It will have chapters on propositional logic (both special cases and the
general problem), predicate logic, probabilistic logic and belief systems,
and constraint logic programming.
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